Skip to content Skip to sidebar Skip to footer

How To Work Around Python Pandas DataFrame's "Out Of Bounds Nanosecond Timestamp" Error?

The following code throws an 'Out of bounds nanosecond timestamp: 1452-04-15 00:00:00 ' error. The same code works if I replace the date strings to some recent dates such as 2017-0

Solution 1:

You need period_range:

r = pd.period_range('1452-04-15', '1519-05-02')
print (r)
PeriodIndex(['1452-04-15', '1452-04-16', '1452-04-17', '1452-04-18',
             '1452-04-19', '1452-04-20', '1452-04-21', '1452-04-22',
             '1452-04-23', '1452-04-24',
             ...
             '1519-04-23', '1519-04-24', '1519-04-25', '1519-04-26',
             '1519-04-27', '1519-04-28', '1519-04-29', '1519-04-30',
             '1519-05-01', '1519-05-02'],
            dtype='period[D]', length=24488, freq='D')

df = pd.DataFrame({'Date' : r})
print (df.head())
        Date
0 1452-04-15
1 1452-04-16
2 1452-04-17
3 1452-04-18
4 1452-04-19

because timestamp limitations:

In [66]: pd.Timestamp.min
Out[66]: Timestamp('1677-09-21 00:12:43.145225')

In [67]: pd.Timestamp.max
Out[67]: Timestamp('2262-04-11 23:47:16.854775807')

Post a Comment for "How To Work Around Python Pandas DataFrame's "Out Of Bounds Nanosecond Timestamp" Error?"