Median Of Panda Datetime64 Column
Is there a way to compute and return in datetime format the median of a datetime column? I want to calculate the median of a column in python which is in datetime64[ns] format. Bel
Solution 1:
You can also try quantile(0.5)
:
df['date'].astype('datetime64[ns]').quantile(0.5, interpolation="midpoint")
Solution 2:
How about just taking the middle value?
dates = list(df.sort('date')['date'])
print dates[len(dates)//2]
If the table is sorted you can even skip a line.
Solution 3:
You are close, the median()
return a float
so convert it to be an int
first:
import math
median = math.floor(df['date'].astype('int64').median())
Then convert the int
represent the date into datetime64
:
result = np.datetime64(median, "ns") #unit: nanosecond
Post a Comment for "Median Of Panda Datetime64 Column"