Median Of Panda Datetime64 Column
Is there a way to compute and return in datetime format the median of a datetime column? I want to calculate the median of a column in python which is in datetime64[ns] format. Bel
Solution 1:
You can also try quantile(0.5):
df['date'].astype('datetime64[ns]').quantile(0.5, interpolation="midpoint")
Solution 2:
How about just taking the middle value?
dates = list(df.sort('date')['date'])
print dates[len(dates)//2]
If the table is sorted you can even skip a line.
Solution 3:
You are close, the median() return a float so convert it to be an int first:
import math
median = math.floor(df['date'].astype('int64').median())
Then convert the int represent the date into datetime64:
result = np.datetime64(median, "ns") #unit: nanosecond
Post a Comment for "Median Of Panda Datetime64 Column"