Pandas Groupby Two Columns And Summarize By Mean
I have a data frame like this: df = pd.DataFrame() df['id'] = [1,1,1,2,2,3,3,3,3,4,4,5] df['view'] = ['A', 'B', 'A', 'A','B', 'A', 'B', 'A', 'A','B', 'A', 'B'] df['value'] = np.ran
Solution 1:
You need reset_index
or parameter as_index=False
in groupby
, because you get MuliIndex
and by default the higher levels of the indexes are sparsified to make the console output a bit easier on the eyes:
np.random.seed(100)
df = pd.DataFrame()
df['id'] = [1,1,1,2,2,3,3,3,3,4,4,5]
df['view'] = ['A', 'B', 'A', 'A','B', 'A', 'B', 'A', 'A','B', 'A', 'B']
df['value'] = np.random.random(12)
print (df)
id view value
0 1 A 0.543405
1 1 B 0.278369
2 1 A 0.424518
3 2 A 0.844776
4 2 B 0.004719
5 3 A 0.121569
6 3 B 0.670749
7 3 A 0.825853
8 3 A 0.136707
9 4 B 0.575093
10 4 A 0.891322
11 5 B 0.209202
res = df.groupby(['id', 'view'])['value'].mean().reset_index()
print (res)
id view value
0 1 A 0.483961
1 1 B 0.278369
2 2 A 0.844776
3 2 B 0.004719
4 3 A 0.361376
5 3 B 0.670749
6 4 A 0.891322
7 4 B 0.575093
8 5 B 0.209202
res = df.groupby(['id', 'view'], as_index=False)['value'].mean()
print (res)
id view value
0 1 A 0.483961
1 1 B 0.278369
2 2 A 0.844776
3 2 B 0.004719
4 3 A 0.361376
5 3 B 0.670749
6 4 A 0.891322
7 4 B 0.575093
8 5 B 0.209202
Post a Comment for "Pandas Groupby Two Columns And Summarize By Mean"