Skip to content Skip to sidebar Skip to footer

Understanding ‘backward()’: How To Code The Pytorch Function ‘.backward()’ From Scratch?

I’m a newbie learning Deep Learning, I’m stuck trying to understand what ‘.backward()’ from Pytorch does since it does pretty much most the work there. Therefor, I’m tryi

Solution 1:

backward() is calculating the gradients with respect to (w.r.t.) graph leaves. grad() function is more general it can calculate the gradients w.r.t. any inputs (leaves included).

I implemented the grad() function, some time ago, you may check this. It uses the power of Automatic Differentiation (AD).

import math
class ADNumber:
    
    def __init__(self,val, name=""):
        self.name=name
        self._val=val
        self._children=[]         
        
    def __truediv__(self,other):
        new = ADNumber(self._val / other._val, name=f"{self.name}/{other.name}")
        self._children.append((1.0/other._val,new))
        other._children.append((-self._val/other._val**2,new)) # first derivation of 1/x is -1/x^2
        return new

    def __mul__(self,other):
        new = ADNumber(self._val*other._val, name=f"{self.name}*{other.name}")
        self._children.append((other._val,new))
        other._children.append((self._val,new))
        return new

    def __add__(self,other):
        if isinstance(other, (int, float)):
            other = ADNumber(other, str(other))
        new = ADNumber(self._val+other._val, name=f"{self.name}+{other.name}")
        self._children.append((1.0,new))
        other._children.append((1.0,new))
        return new

    def __sub__(self,other):
        new = ADNumber(self._val-other._val, name=f"{self.name}-{other.name}")
        self._children.append((1.0,new))
        other._children.append((-1.0,new))
        return new
    
            
    @staticmethod
    def exp(self):
        new = ADNumber(math.exp(self._val), name=f"exp({self.name})")
        self._children.append((self._val,new))
        return new

    @staticmethod
    def sin(self):
        new = ADNumber(math.sin(self._val), name=f"sin({self.name})")      
        self._children.append((math.cos(self._val),new)) # first derivative is cos
        return new
    
    def grad(self,other):
        if self==other:            
            return 1.0
        else:
            result=0.0
            for child in other._children:                 
                result+=child[0]*self.grad(child[1])                
            return result
        
A = ADNumber # shortcuts
sin = A.sin
exp = A.exp

def print_childs(f, wrt): # with respect to
    for e in f._children:
        print("child:", wrt, "->" , e[1].name, "grad: ", e[0])
        print_child(e[1], e[1].name)
        
    
x1 = A(1.5, name="x1")
x2 = A(0.5, name="x2")
f=(sin(x2)+1)/(x2+exp(x1))+x1*x2

print_childs(x2,"x2")
print("\ncalculated gradient for the function f with respect to x2:", f.grad(x2))

Out:

child: x2 -> sin(x2) grad:  0.8775825618903728
child: sin(x2) -> sin(x2)+1 grad:  1.0
child: sin(x2)+1 -> sin(x2)+1/x2+exp(x1) grad:  0.20073512936690338
child: sin(x2)+1/x2+exp(x1) -> sin(x2)+1/x2+exp(x1)+x1*x2 grad:  1.0
child: x2 -> x2+exp(x1) grad:  1.0
child: x2+exp(x1) -> sin(x2)+1/x2+exp(x1) grad:  -0.05961284871202578
child: sin(x2)+1/x2+exp(x1) -> sin(x2)+1/x2+exp(x1)+x1*x2 grad:  1.0
child: x2 -> x1*x2 grad:  1.5
child: x1*x2 -> sin(x2)+1/x2+exp(x1)+x1*x2 grad:  1.0

calculated gradient for the function f with respect to x2: 1.6165488003791766

Post a Comment for "Understanding ‘backward()’: How To Code The Pytorch Function ‘.backward()’ From Scratch?"