Understanding ‘backward()’: How To Code The Pytorch Function ‘.backward()’ From Scratch?
I’m a newbie learning Deep Learning, I’m stuck trying to understand what ‘.backward()’ from Pytorch does since it does pretty much most the work there. Therefor, I’m tryi
Solution 1:
backward()
is calculating the gradients with respect to (w.r.t.) graph leaves.
grad()
function is more general it can calculate the gradients w.r.t. any inputs (leaves included).
I implemented the grad()
function, some time ago, you may check this. It uses the power of Automatic Differentiation (AD).
import math
class ADNumber:
def __init__(self,val, name=""):
self.name=name
self._val=val
self._children=[]
def __truediv__(self,other):
new = ADNumber(self._val / other._val, name=f"{self.name}/{other.name}")
self._children.append((1.0/other._val,new))
other._children.append((-self._val/other._val**2,new)) # first derivation of 1/x is -1/x^2
return new
def __mul__(self,other):
new = ADNumber(self._val*other._val, name=f"{self.name}*{other.name}")
self._children.append((other._val,new))
other._children.append((self._val,new))
return new
def __add__(self,other):
if isinstance(other, (int, float)):
other = ADNumber(other, str(other))
new = ADNumber(self._val+other._val, name=f"{self.name}+{other.name}")
self._children.append((1.0,new))
other._children.append((1.0,new))
return new
def __sub__(self,other):
new = ADNumber(self._val-other._val, name=f"{self.name}-{other.name}")
self._children.append((1.0,new))
other._children.append((-1.0,new))
return new
@staticmethod
def exp(self):
new = ADNumber(math.exp(self._val), name=f"exp({self.name})")
self._children.append((self._val,new))
return new
@staticmethod
def sin(self):
new = ADNumber(math.sin(self._val), name=f"sin({self.name})")
self._children.append((math.cos(self._val),new)) # first derivative is cos
return new
def grad(self,other):
if self==other:
return 1.0
else:
result=0.0
for child in other._children:
result+=child[0]*self.grad(child[1])
return result
A = ADNumber # shortcuts
sin = A.sin
exp = A.exp
def print_childs(f, wrt): # with respect to
for e in f._children:
print("child:", wrt, "->" , e[1].name, "grad: ", e[0])
print_child(e[1], e[1].name)
x1 = A(1.5, name="x1")
x2 = A(0.5, name="x2")
f=(sin(x2)+1)/(x2+exp(x1))+x1*x2
print_childs(x2,"x2")
print("\ncalculated gradient for the function f with respect to x2:", f.grad(x2))
Out:
child: x2 -> sin(x2) grad: 0.8775825618903728
child: sin(x2) -> sin(x2)+1 grad: 1.0
child: sin(x2)+1 -> sin(x2)+1/x2+exp(x1) grad: 0.20073512936690338
child: sin(x2)+1/x2+exp(x1) -> sin(x2)+1/x2+exp(x1)+x1*x2 grad: 1.0
child: x2 -> x2+exp(x1) grad: 1.0
child: x2+exp(x1) -> sin(x2)+1/x2+exp(x1) grad: -0.05961284871202578
child: sin(x2)+1/x2+exp(x1) -> sin(x2)+1/x2+exp(x1)+x1*x2 grad: 1.0
child: x2 -> x1*x2 grad: 1.5
child: x1*x2 -> sin(x2)+1/x2+exp(x1)+x1*x2 grad: 1.0
calculated gradient for the function f with respect to x2: 1.6165488003791766
Post a Comment for "Understanding ‘backward()’: How To Code The Pytorch Function ‘.backward()’ From Scratch?"