Aws Glue Truncate Redshift Table
Solution 1:
You can alter the Glue script to perform a "preaction" before insertion as explained here:
https://aws.amazon.com/premiumsupport/knowledge-center/sql-commands-redshift-glue-job/
datasink4 = glueContext.write_dynamic_frame.from_jdbc_conf(frame
= datasource0, catalog_connection = "test_red", connection_options = {"preactions":"truncate table target_table;","dbtable": "target_table", "database": "redshiftdb"}, redshift_tmp_dir = 's3://s3path', transformation_ctx = "datasink4")
For instance, for my script which was mostly based on the defaults I inserted a new DataSink before the last DataSink (I've replaced some of my deatils with {things}):
## @type: DataSink
## @args: [catalog_connection = "redshift-data-live", connection_options = {"dbtable": "{DBTABLE}", "database": "{DBNAME}"}, redshift_tmp_dir = TempDir, transformation_ctx = "datasink4"]
## @return: datasink4
## @inputs: [frame = dropnullfields3]
datasink4 = glueContext.write_dynamic_frame.from_jdbc_conf(frame = dropnullfields3, catalog_connection = "redshift-data-live", connection_options = {"preactions":"truncate table {TABLENAME};","dbtable": "{SCHEMA.TABLENAME}", "database": "{DB}"}, redshift_tmp_dir = args["TempDir"], transformation_ctx = "datasink4")
## @type: DataSink
## @args: [catalog_connection = "redshift-data-live", connection_options = {"dbtable": "{SCHEMA.TABLENAME}", "database": "{DB}"}, redshift_tmp_dir = TempDir, transformation_ctx = "datasink4"]
## @return: datasink5
## @inputs: [frame = datasink4]
datasink5 = glueContext.write_dynamic_frame.from_jdbc_conf(frame = datasink4, catalog_connection = "redshift-data-live", connection_options = {"dbtable": "{SCHEMA.TABLENAME}", "database": "{DB}"}, redshift_tmp_dir = args["TempDir"], transformation_ctx = "datasink5")
job.commit()
Solution 2:
The link @frobinrobin provided is out of date, and I tried many times that the preactions statements will be skiped even you provide a wrong syntax, and came out with duplicated rows(insert action did executed!)
Try this:
just replace the syntax from
glueContext.write_dynamic_frame.from_jdbc_conf()
in the link above to glueContext.write_dynamic_frame_from_jdbc_conf()
will works!
At least this help me out in my case(AWS Glue job just insert data into Redshift without executing Truncate table actions)
Solution 3:
Did you have a look at Job Bookmarks in Glue? It's a feature for keeping the high water mark and works with s3 only. I am not 100% sure, but it may require partitioning to be in place.
Solution 4:
You need to modify the auto generated code provided by Glue. Connect to redshift using spark jdbc connection and execute the purge query.
To spin up Glue containers in redshift VPC; specify the connection in glue job, to gain access for redshift cluster.
Hope this helps.
Solution 5:
You can use spark/Pyspark databricks library to do an append after a truncate table of the table (this is better performance than an overwrite):
preactions = "TRUNCATE table <schema.table>"
df.write\
.format("com.databricks.spark.redshift")\
.option("url", redshift_url)\
.option("dbtable", redshift_table)\
.option("user", user)\
.option("password", readshift_password)\
.option("aws_iam_role", redshift_copy_role)\
.option("tempdir", args["TempDir"])\
.option("preactions", preactions)\
.mode("append")\
.save()
You can take a look at databricks documentation in here
Post a Comment for "Aws Glue Truncate Redshift Table"