Fill Other Columns With Missing Dates Nan Pandas Datafrane
I am actually extracting data from several excel files monitoring my daily calorie intake. I managed to use list comprehension to generate the dates. I tried to use merge or join a
Solution 1:
Build your dataframe with existing data and reindex it with missing dates
# Input data
date_list = ['2021-05-22','2021-05-24','2021-05-26','2021-05-27']
calories = [420,380,390,400,350,280,300,430]
duration = [50,40,45,50,45,50,44,58]
# Dataframe with sparse index
idx = pd.MultiIndex.from_product([pd.to_datetime([d for d in date_list]),
["Morning", "Afternoon"]],
names=["Date", "Time"])
df = pd.DataFrame({'calories': calories, 'duration': duration}, index=idx)
# Dataframe with full index
idx1 = pd.MultiIndex.from_product([pd.date_range(date_list[0], date_list[-1]),
["Morning", "Afternoon"]],
names=["Date", "Time"])
df1 = df.reindex(idx1).reset_index()
>>> df1
Date Time calories duration
0 2021-05-22 Morning 420.0 50.0
1 2021-05-22 Afternoon 380.0 40.0
2 2021-05-23 Morning NaN NaN
3 2021-05-23 Afternoon NaN NaN
4 2021-05-24 Morning 390.0 45.0
5 2021-05-24 Afternoon 400.0 50.0
6 2021-05-25 Morning NaN NaN
7 2021-05-25 Afternoon NaN NaN
8 2021-05-26 Morning 350.0 45.0
9 2021-05-26 Afternoon 280.0 50.0
10 2021-05-27 Morning 300.0 44.0
11 2021-05-27 Afternoon 430.0 58.0
Post a Comment for "Fill Other Columns With Missing Dates Nan Pandas Datafrane"