How To Apply The Describe Function After Grouping A Pyspark Dataframe?
I want to find the cleanest way to apply the describe function to a grouped DataFrame (this question can also grow to apply any DF function to a grouped DF) I tested grouped aggreg
Solution 1:
Try this:
df.groupby("id").agg(F.count('v').alias('count'), F.mean('v').alias('mean'), F.stddev('v').alias('std'), F.min('v').alias('min'), F.expr('percentile(v, array(0.25))')[0].alias('%25'), F.expr('percentile(v, array(0.5))')[0].alias('%50'), F.expr('percentile(v, array(0.75))')[0].alias('%75'), F.max('v').alias('max')).show()
Output:
+---+-----+----+------------------+---+----+---+----+----+
| id|count|mean| std|min| %25|%50| %75| max|
+---+-----+----+------------------+---+----+---+----+----+
| 1| 2| 1.5|0.7071067811865476|1.0|1.25|1.5|1.75| 2.0|
| 2| 3| 6.0| 3.605551275463989|3.0| 4.0|5.0| 7.5|10.0|
+---+-----+----+------------------+---+----+---+----+----+
Solution 2:
If you have a utility function module you could put something like this in it and call a one liner afterwards.
import pyspark.sql.functions as F
defgroupby_apply_describe(df, groupby_col, stat_col):
"""From a grouby df object provide the stats
of describe for each key in the groupby object.
Parameters
----------
df : spark dataframe groupby object
col : column to compute statistics on
"""
output = df.groupby(groupby_col).agg(
F.count(stat_col).alias("count"),
F.mean(stat_col).alias("mean"),
F.stddev(stat_col).alias("std"),
F.min(stat_col).alias("min"),
F.expr(f"percentile({stat_col}, array(0.25))")[0].alias("%25"),
F.expr(f"percentile({stat_col}, array(0.5))")[0].alias("%50"),
F.expr(f"percentile({stat_col}, array(0.75))")[0].alias("%75"),
F.max(stat_col).alias("max"),
)
print(output.orderBy(groupby_col).show())
return output
In your case you would call groupby_apply_describe(df, 'id', 'v')
. The output should match your requirements.
Solution 3:
Describe multiple columns...
Inspired by the answer before, but tested in spark/3.0.1
import itertools as it
import pyspark.sql.functions as F
from functools import reduce
group_column = 'id'
metric_columns = ['v','v1','v2']
# You will have a dataframe with df variabledefspark_describe(group_col, stat_col):
return df.groupby(group_col).agg(
F.count(stat_col).alias(f"{stat_col}_count"),
F.mean(stat_col).alias(f"{stat_col}_mean"),
F.stddev(stat_col).alias(f"{stat_col}_std"),
F.min(stat_col).alias(f"{stat_col}_min"),
F.max(stat_col).alias("{stat_col}_max"),
F.expr(f"percentile({stat_col}, array(0.25))")[0].alias(f"{stat_col}_25pct"),
F.expr(f"percentile({stat_col}, array(0.5))")[0].alias(f"{stat_col}_50pct"),
F.expr(f"percentile({stat_col}, array(0.75))")[0].alias(f"{stat_col}_75pct"),
)
_join = lambda a,b: a.join(b, group_column, 'inner')
dff = reduce(_join, list(map(lambda x: spark_describe(*x), zip(it.repeat(group_column, len(metric_columns)), metric_columns))))
Solution 4:
You would run this:
df.groupby("id").describe('uniform', 'normal').show()
It's fairly self-explanatory.
Post a Comment for "How To Apply The Describe Function After Grouping A Pyspark Dataframe?"