Skip to content Skip to sidebar Skip to footer

Create A New Column In Pyspark Dataframe By Applying A Udf On Another Column From This Dataframe

My data is dataset diamond: +-----+-------+-----+-------+-----+-----+-----+----+----+----+ |carat| cut|color|clarity|depth|table|price| x| y| z| +-----+-------+-----+-----

Solution 1:

Modifying your solution

Your problem is that your udf is explicitly looking for a the globally defined df and is not using it's size parameter in any way.

Try this:

from pyspark.sql import functions as F
from pyspark.sql.types import StringType

@F.udf(StringType())defbin_carat(s):
    if0 < s <= 1:
        return'[0,1)'if1 < s <= 2:
        return'[1,2)'if2 < s <= 3:
        return'[2,3)'if3 < s <= 4:
        return'[3,4)'if4 < s <= 5:
        return'[4,5)'elif s:
        return'[5, 6)'

diamonds.withColumn("carat_bin", bin_carat(diamonds['carat'])).show()

This results in (I modified your inputs slightly so that one can see the different cases):

+-----+-------+-----+-------+-----+-----+-----+----+----+----+---------+
|carat|    cut|color|clarity|depth|table|price|   x|   y|   z|carat_bin|
+-----+-------+-----+-------+-----+-----+-----+----+----+----+---------+
| 0.23|  Ideal|    E|    SI2| 61.5| 55.0|  326|3.95|3.98|2.43|    [0,1)|
| 1.34|Premium|    E|    SI1| 59.8| 61.0|  326|3.89|3.84|2.31|    [1,2)|
| 2.45|   Good|    E|    VS1| 56.9| 65.0|  327|4.05|4.07|2.31|    [2,3)|
| 3.12|Premium|    I|    VS2| 62.4| 58.0|  334| 4.2|4.23|2.63|    [3,4)|
|  5.6|   Good|    J|    SI2| 63.3| 58.0|  335|4.34|4.35|2.75|   [5, 6)|
+-----+-------+-----+-------+-----+-----+-----+----+----+----+---------+

For your dataframe, just as expected. There seems to be a fundamental difference when using spark.udf.register('carat_bin', carat_bin) which always led to an error.

Using pandas udfs

If you use pyspark 2.3 and above, there is an even simpler way to achieve this using pandas udfs. Just have a look at the following:

from pyspark.sql.functions import PandasUDFType
import pandas as pd
from pyspark.sql.functions import pandas_udf

@pandas_udf(StringType(), PandasUDFType.SCALAR)defcut_to_str(s):
    return pd.cut(s, bins=[0,1,2,3,4,5], labels=['[0,1)', '[1,2)', '[2,3)', '[3,4)', '[4,5)']).astype(str)

Use this in the same fashion as the previously defined udf:

diamonds.withColumn("carat_bin", cut_to_str(diamonds['carat'])).show()

And it will result in the exact same dataframe as shown above.

Post a Comment for "Create A New Column In Pyspark Dataframe By Applying A Udf On Another Column From This Dataframe"