Skip to content Skip to sidebar Skip to footer

How To Check If All The Elements In List Are Present In Pandas Column

I have a dataframe and a list: df = pd.DataFrame({'id':[1,2,3,4,5,6,7,8], 'char':[['a','b'],['a','b','c'],['a','c'],['b','c'],[],['c','a','d'],['c','d'],['a']]}) names = ['a'

Solution 1:

Use pd.DataFrame.apply:

df[df['char'].apply(lambda x: set(names).issubset(x))]

Output:

   id       char
12[a, b, c]23[a, c]56[c, a, d]

Solution 2:

You can build a set from the list of names for a faster lookup, and use set.issubset to check if all elements in the set are contained in the column lists:

names = set(['a','c'])
df[df['char'].map(names.issubset)]

   id       char
1   2  [a, b, c]
2   3     [a, c]
5   6  [c, a, d]

Solution 3:

Use list comprehension with issubset:

mask = [set(names).issubset(x) for x indf['char']]
df = df[mask]
print (df)
   id       char
1   2  [a, b, c]
2   3     [a, c]
5   6  [c, a, d]

Another solution with Series.map:

df = df[df['char'].map(set(names).issubset)]
print (df)
   id       char
1   2  [a, b, c]
2   3     [a, c]
5   6  [c, a, d]

Performance Depends of number of rows and number of matched values:

df = pd.concat([df] *10000, ignore_index=True)

In [270]: %timeit df[df['char'].apply(lambda x: set(names).issubset(x))]
45.9 ms ± 2.26 ms per loop (mean ± std. dev. of7 runs, 10 loops each)

In [271]: %%timeit
     ...: names =set(['a','c'])
     ...: [names.issubset(set(row)) for _,rowin df.char.iteritems()]
     ...: 
46.7 ms ± 5.51 ms per loop (mean ± std. dev. of7 runs, 10 loops each)


In [272]: %%timeit
     ...: df[[set(names).issubset(x) for x in df['char']]]
     ...: 
45.6 ms ± 1.26 ms per loop (mean ± std. dev. of7 runs, 10 loops each)

In [273]: %%timeit
     ...: df[df['char'].map(set(names).issubset)]
     ...: 
18.3 ms ± 2.96 ms per loop (mean ± std. dev. of7 runs, 100 loops each)

In [274]: %%timeit
     ...: n =set(names)
     ...: df[df['char'].map(n.issubset)]
     ...: 
16.6 ms ± 278 µs per loop (mean ± std. dev. of7 runs, 100 loops each)

In [279]: %%timeit
     ...: names =set(['a','c'])
     ...: m = [name.issubset(i) for i in df.char.values.tolist()]
     ...: 
19.2 ms ± 317 µs per loop (mean ± std. dev. of7 runs, 100 loops each)

Solution 4:

Try this.

df['char']=df['char'].apply(lambda x: x if ("a"in x and "c"in x) else np.nan)
print(df.dropna())

output:

   id       char
12[a, b, c]23[a, c]56[c, a, d]

Post a Comment for "How To Check If All The Elements In List Are Present In Pandas Column"