Convert A Columns Of String To List In Pandas
I have a problem with the type of one of my column in a pandas dataframe. Basically the column is saved in a csv file as a string, and I wanna use it as a tuple to be able to conve
Solution 1:
df['LABELS'] = df['LABELS'].str.strip('()').str.split(',')
But if no NaN
s here, list comprehension
working nice too:
df['LABELS'] = [x.strip('()').split(',') for x indf['LABELS']]
Solution 2:
You can use ast.literal_eval
, which will give you a tuple:
import ast
df.LABELS = df.LABELS.apply(ast.literal_eval)
If you do want a list, use:
df.LABELS.apply(lambda s: list(ast.literal_eval(s)))
Solution 3:
Sorry I was late to the party. So for other latecomers I got this to work based on the above replies:
df['hashtags'] = df.apply(lambda row: row['hashtags'].strip('[]').replace('"', '').replace(' ', '').split(',') , axis=1)
I loaded a csv with some columns looking like this ...,['hashtag1','hashtag2'],... and the Panda DataFrame loaded it as a string object. I used the above code and it converted to list. I then used "explode" to flatten the data.
Solution 4:
You can try this (assuming your csv
is called filename.csv
):
df = pd.read_csv('filename.csv')
df['LABELS'] = df.LABELS.apply(lambda x: x.strip('()').split(','))
>>> df
ID LABELS
0 1 [1.0, 2.0, 2.0, 3.0, 3.0, 1.0, 4.0]
1 2 [1.0, 2.0, 2.0, 3.0, 3.0, 1.0, 4.0]
Solution 5:
Alternatively, you might consider regular expressions:
pattern = re.compile("[0-9]\.[0-9]")
df.LABELS.apply(pattern.findall)
Post a Comment for "Convert A Columns Of String To List In Pandas"