Python Dataframe: Transpose One Column Into Multiple Column
I have a dataframe like below: df = pd.DataFrame({'month':['2017-09-27','2017-09-27','2017-09-28','2017-09-29'],'Cost':[100,500,200,300]})  How can I get a df like this:  2017-09-2
Solution 1:
Use cumcount to compute a "cumulative count" of the items within each group. We'll use these values (below) as index labels. 
In [97]: df['index'] = df.groupby('month').cumcount()
In [98]: df
Out[98]: 
   Cost       month  index
01002017-09-27015002017-09-27122002017-09-28033002017-09-290Then the desired result can be obtained by pivoting:
In [99]: df.pivot(index='index', columns='month', values='Cost')
Out[99]: 
month  2017-09-272017-09-282017-09-29index0100.0200.0300.01500.0         NaN         NaN
Solution 2:
Option 1zip_longest
from itertools importzip_longests= df.groupby('month').Cost.apply(list)
pd.DataFrame(list(zip_longest(*s)), columns=s.index)
month  2017-09-272017-09-282017-09-290100200.0300.01500         NaN         NaN
Option 2pd.concat
pd.concat(
    {k:g.reset_index(drop=True)fork, gindf.groupby('month').Cost},axis=1)2017-09-27  2017-09-28  2017-09-290100200.0300.01500NaNNaNOption 3
Similar to @unutbu in that it uses cumcount. However, I use set_index and unstack to do the pivoting.
df.set_index([df.groupby('month').cumcount(), 'month']).Cost.unstack()
month  2017-09-272017-09-282017-09-290100.0200.0300.01500.0         NaN         NaN
Post a Comment for "Python Dataframe: Transpose One Column Into Multiple Column"