How To Move Nan Values To End In All Columns
I have a df like this, A B C a NaN NaN b NaN NaN c NaN NaN NaN a NaN NaN b NaN NaN c NaN NaN NaN a NaN NaN b NaN NaN c desi
Solution 1:
You can use a bit changed justify function:
defjustify(a, invalid_val=0, axis=1, side='left'):
"""
Justifies a 2D array
Parameters
----------
A : ndarray
Input array to be justified
axis : int
Axis along which justification is to be made
side : str
Direction of justification. It could be 'left', 'right', 'up', 'down'
It should be 'left' or 'right' for axis=1 and 'up' or 'down' for axis=0.
"""if invalid_val is np.nan:
#change to notnull
mask = pd.notnull(a)
else:
mask = a!=invalid_val
justified_mask = np.sort(mask,axis=axis)
if (side=='up') | (side=='left'):
justified_mask = np.flip(justified_mask,axis=axis)
#change dtype to object
out = np.full(a.shape, invalid_val, dtype=object)
if axis==1:
out[justified_mask] = a[mask]
else:
out.T[justified_mask.T] = a.T[mask.T]
return out
df = pd.DataFrame(justify(df.values, invalid_val=np.nan, side='up', axis=0),
columns=df.columns)
print (df)
A B C
0 a a a
1 b b b
2ccc3NaNNaNNaN4NaNNaNNaN5NaNNaNNaN6NaNNaNNaN7NaNNaNNaN8NaNNaNNaN
Solution 2:
You can create a boolean mask, then sort the boolean mask using argsort
, and index your final array:
A = df.isnull().values
out = df.values[np.argsort(A, axis=0, kind='mergesort'), np.arange(A.shape[1])]
array([['a', 'a', 'a'],
['b', 'b', 'b'],
['c', 'c', 'c'],
[nan, nan, nan],
[nan, nan, nan],
[nan, nan, nan],
[nan, nan, nan],
[nan, nan, nan],
[nan, nan, nan]], dtype=object)
And to recreate the DataFrame:
pd.DataFrame(out, columns=df.columns)
A B C
0 a a a
1 b b b
2ccc3NaNNaNNaN4NaNNaNNaN5NaNNaNNaN6NaNNaNNaN7NaNNaNNaN8NaNNaNNaN
Post a Comment for "How To Move Nan Values To End In All Columns"